Tag Archives: STM32

Encounter with a Spark

I have tested several IoT platforms over the last couple of weeks. So I was not too keen to checkout yet another one. However, when I got the annoucement that the Spark Core is shipping I could not resist and ordered one. It arrive in the mail today so I thought I will take it for a spin.

The Spark Core comes in a very stylish little box.

Spark Box

Figure1: Spark Box

To my surprise the box did even includes a breadboard:

spark2spark3

Figure 2: Open Spark Core Box

Overall, the box contains the Spark Core board, a breadboard, a micro-USB cable and Spark sticker.

spark4

Figure 3: Box Content

It is amazingly simple to get the board up and running. By following these few simple steps:

  1. Download the Spark App for iPhone or Android
  2. Setup an account by register at spark.io
  3. Power up the Spark Core over the USB cable
  4. Start Spark App and log into your wireless network

If everything works well you will get rewarded with the RGB-LED on the Spark board flashing in rainbow colors. Once the Spark Core is connected to you WiFi and paired with the Spark cloud, it took me only a few minutes to get an on-board blue LED blinking.

It very quickly becomes obvious that the Spark team has done a great job setting up an entire end-to-end IoT solution consisting of:

  1. Spark Hardware
  2. Cloud based IDE
  3. Arduino compatible API
  4. Free for life cloud back-end service with a RESTful API

All the Spark Core software is open source. The board uses a CC3000 WiFi Module from TI combined with a 32-bit ARM Cortex-M3 powered STM32F103 from ST Microelectronics. The Spark team has come up with a nice integration of this hardware and the cloud server back end. It is based on the CoAP protocol specification and allows for an easy and energy efficient integrated IoT solution.

The cloud API offers over-the-air (OTA) firmware updating where the input can either be c/c++ source code or binaries. For those that don't want to use Spark Builder, their cloud based IDE the web site also promises support for desktop IDEs like Eclipse.

So much for today, I will cover more details in future blogs.

Another IoT Platform - WICED

Broadcom is also jumping on the IoT wagon with the WICED  platform.  The platform is targeting Bluetooth and WiFi applications. The WiFi modules feature the BCM43362 WiFi chip integrated into a System in a Package (SiP) module. The Image below shows a WiFI WICED PCB module with a Murata WiFi SiP Module and a STM32F205 microcontroller. Murata also offers SiP modules that have the ARM microcontroller built in.

wiced_BCM943362WCD4

On the software side the platform is supported by a feature rich SDK and support for OSs:

  • WICED Application Framework including bootloader, flash storage API, over-the-air (OTA) upgrades, factory reset, and system monitor.
  • An open source build system and toolchain based on GNU make (native IAR support coming soon!).
  • A GUI Development Environment based on Eclipse CDT that seamlessly integrates with a JTAG programmer and single-step, thread-aware debugger based on OpenOCD and gdb.
  • A software stack with a choice of several RTOS/TCP stack options including ThreadX/NetXThreadX/NetX Duo and FreeRTOS/LwIP.
  • Support for security and networking features such as SSL/TLS, IPv4/IPv6 networking, and mDNS (Bonjour) device discovery.
  • Simple out-of-box device setup using Apple-licensed MFi technology or via a web browser and softAP/web server.

Broadcom also make a set of software examples available that help getting started quickly:

  • Production ready sample applications.
  • Lots of application snippets demonstrating how to use the rich WICED API feature set.
  • Various test applications to aid manufacturing and certification.
  • All documentation included inside the WICED SDK.

Cortino - Another STM32 based Arduino

While searching for some STM32 related data I cam across the Cortino board by Bugblat.

Cortino

Like my Olimex featured in an earlier blog post this board uses a STM32F103 based 32-bit ARM Cortex-M3 CPU. The Cortino board looks like a nicely done Arduino variant. It even includes a FTDI chip. Although Bugblat does not provide support for the Arduino IDE software their product page offers a good overview of available 3rd Party IDEs.

Like for the Olimex, it should not be too difficult to adopt the Maple IDE from Leaflabs. However the Mable IDE is now getting a bit dated.  A more current Arduino 1.5.5 IDE can be created by using the instructions on Makerlab.me's web page . Note unless you are fluent in Chinese you have to use Goggle Translate. However the code is documented in English and available from Github. For those that want to learn more about the details of supporting a new board there is a good document available on Arduino.cc  Arduino IDE 1.5 3rd party Hardware specification. Another alternative for Mac users is the OS X native Xcode IDE as offered by embedXcode.

Olimexino-STM32

I have played around with the Arduino and had fun with it. However I am accustomed to more powerful micro-controllers than the AVR CPU. So it was only a matter of time until I started to look for an ARM based board that offered Arduino shields.  One board that caught my attention was the Olimexino-STM32 board.

OLIMEXINO-STM32-01

It is a nice board that offers the following key features:

  • STM32F103RB based ARM CPU
  • SD-Card slot
  • Mini USB port
  • CAN bus
  • Wide range of supply 9-30V
  • Battery supply plug

The board is a derivative of the Maple board from LeafLabs and also supports their Arduino like IDE.